Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ju-Zhen Yuan,^a* Xin-Miao Chen^b and Nian-Yu Huang^a

^aKey Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China, and ^bCollege of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail: juzhenyuan05@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 292 KMean $\sigma(\text{C}-\text{C}) = 0.003 \text{ Å}$ R factor = 0.049 wR factor = 0.123 Data-to-parameter ratio = 18.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. 2-*tert*-Butylamino-1-(4-chlorophenyl)-4,4dimethyl-1*H*-imidazolin-5(4*H*)-one

In the title compound, $C_{15}H_{20}ClN_3O$, the five-membered ring and the amino N atom are essentially coplanar.

Received 7 November 2005 Accepted 18 January 2006

Comment

Derivatives of imidazolinone have shown biological and pharmaceutical activities (Sulkowski *et al.*, 1997). Some have exhibited good antibacterial and antifungal activities (Trivedi *et al.*, 2002). In recent years, we have been engaged in the preparation of derivatives of heterocycles *via* the aza-Wittig reaction (Ding *et al.*, 2004). The title compound, (I), was synthesized and structurally characterized in this context.

Atom N3 and the five-membered ring are essentially coplanar (Fig. 1), the maximum deviation being 0.0006 Å for atom N3, and the mean deviation from this plane is 0.0142 Å. The dihedral angle between this plane and the benzene ring is 114.3 (2)°. The bond lengths involving atom C7 indicate a degree of electron delocalization (Yang *et al.*, 1999). Selected bond lengths and angles are listed in Table 1 and a packing diagram is shown in Fig. 2.

Experimental

To a solution of iminophosphane (3 mmol) in dichloromethane (10 ml) was added a solution of phenyl isocyanate in dichloromethane (10 ml). The resulting solution was stirred for 1.5 h at 258 K. The reaction mixture was then purified by column chromatography on silica gel using petroleum ether–diethyl ether (25:1 ν/ν) as eluent to afford the intermediate carbodiimide, which was reacted with *tert*-butyl imide to give (I) in 56% yield (m.p. 413 K). ¹H NMR (CDCl₃, 400 MHz): δ 7.18–7.50 (*m*, 4H, PhH), 3.59 (*s*, 1H, NH), 1.42 (*s*, 9H, CH₃), 1.59 (*s*, 6H, CH₃). MS (EI, 70 eV) *m*/*z* (%): 294/293 (12/32), 236 (100), 221 (34), 152 (46), 127 (28), 56 (32). Crystals suitable for single-crystal X-ray diffraction were grown from a mixture of petroleum ether and dichloromethane (3:1 ν/ν) at 273 K.

© 2006 International Union of Crystallography All rights reserved

organic papers

Crystal data

 $C_{15}H_{20}ClN_{3}O$ $M_{r} = 293.79$ Monoclinic, $P2_{1}/n$ a = 6.0758 (8) Å b = 18.8340 (2) Å c = 13.8603 (18) Å $\beta = 98.530$ (2)° V = 1568.5 (3) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: none
10046 measured reflections
3425 independent reflections

Refinement

Refinement on F^2	H-atom parameters constrained	
$R[F^2 > 2\sigma(F^2)] = 0.049$	$w = 1/[\sigma^2(F_o^2) + (0.0571P)^2]$	
$wR(F^2) = 0.123$	where $P = (F_0^2 + 2F_c^2)/3$	
S = 0.98	$(\Delta/\sigma)_{\rm max} < 0.001$	
3425 reflections	$\Delta \rho_{\rm max} = 0.27 \text{ e } \text{\AA}^{-3}$	
186 parameters	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$	

 $D_x = 1.244 \text{ Mg m}^{-3}$

Cell parameters from 2568

Mo $K\alpha$ radiation

reflections

 $\theta = 2.6-22.7^{\circ}$ $\mu = 0.24 \text{ mm}^{-1}$

T = 292 (2) K

 $\begin{aligned} R_{\rm int} &= 0.060\\ \theta_{\rm max} &= 27.0^\circ \end{aligned}$

 $h = -7 \rightarrow 7$ $k = -22 \rightarrow 24$

 $l = -17 \rightarrow 16$

Block, colourless

0.40 \times 0.20 \times 0.10 mm

2208 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °).

C1-C2	1.366 (3)	C7-N1	1.420 (2)
C3-C4	1.378 (3)	C8-N2	1.472 (2)
C4-C6	1.378 (3)	C8-C9	1.514 (3)
C5-C6	1.373 (2)	C9-O1	1.211 (2)
C6-N1	1.426 (2)	C9-N1	1.382 (2)
C7-N2	1.272 (2)	C12-N3	1.487 (2)
C7-N3	1.354 (2)		
C5-C6-C4	119.37 (17)	O1-C9-N1	125.24 (18)
C5-C6-N1	120.14 (16)	N1-C9-C8	105.81 (15)
C4-C6-N1	120.46 (16)	C9-N1-C7	107.06 (15)
N2-C7-N3	127.10 (16)	C9-N1-C6	125.00 (14)
N2-C7-N1	114.80 (15)	C7-N1-C6	127.84 (14)
N3-C7-N1	118.09 (16)	C7-N2-C8	107.38 (14)
N2-C8-C9	104.76 (14)		
N2-C7-N1-C9	0.1 (2)	C5-C6-N1-C7	117.96 (19)
N3-C7-N1-C9	178.79 (16)	C4-C6-N1-C7	-63.8(2)
N2-C7-N1-C6	176.62 (16)	N3-C7-N2-C8	178.64 (18)
N3-C7-N1-C6	-4.7 (3)	N1-C7-N2-C8	-2.9(2)
C5-C6-N1-C9	-66.2(2)	N2-C7-N3-C12	-14.1(3)
C4-C6-N1-C9	112.1 (2)	N1-C7-N3-C12	167.40 (15)

H atoms were placed at calculated positions and refined as riding (C–H = 0.93–0.96 Å and N–H = 0.86 Å), with U_{iso} (H) = 1.2 (CH, NH) or 1.5 (CH₃) times U_{eq} (parent atom).

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL-NT* (Bruker, 1997); software used to prepare material for publication: *SHELXTL-NT*.

The authors gratefully acknowledge financial support of this work by the National Natural Science Foundation of China (project No. 20102001).

Figure 1

View of the molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Packing diagram for (I), viewed down the a axis.

References

- Bruker (1997). SMART (Version 5.0), SAINT (Version 5.0) and SHELXTL-NT (Version 5.10). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Ding, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366-8371.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sulkowski, T. S., Strike, D. P. & Elockdah, H. M. (1997). Chem. Abstr. 126, 195251h; US Patent No. 5 599 829.
- Trivedi, S. D., Kubawat, H. T. & Parekh, H. H. J. (2002). J. Indian Chem. Soc. 79, 282–283.
- Yang, G. F., Liu, H. Y. & Yang, H. Z. (1999). Sci. China Ser. B, 42, 656-662.